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ABSTRACT. Using the basis in the space of  Whitney functions g ( K ), where K C R is the closure of  a 

we construct a special basis in the space C [0, 1 ] union of  a sequence of  closed intervals tending to a point, 

and then a basis in the space of  CeC-functions on a graduated sharp cusp with arbitrary sharpness. 

1. Introduction 

The Grothendieck problem about the existence of bases in a nuclear Fr~chet space was solved 
in the negative by Zobin and Mityagin [21]. Still there is no example of a concrete functional 
nuclear F-space without a basis. The space of C~-functions on a sharp cusp has been considered 
for a long time as a candidate for this role ([2], see also [20]). It should be noted that Domafiski 
and Vogt proved recently in [3] that the space of real-analytic functions on the open domain has 
no basis, but this space is not metrizable. 

If a bounded domain f2 ~ R d has smooth enough boundary, then the space C~((2) has 
a basis. Mityagin proved ([12], L. 25) that the Chebyshev polynomials form a basis in the 
space C ~ [ - 1 ,  1] (see also [8]); the case of domains with smooth boundaries was considered 
by Triebel [16] and Baouendi-Goulaouic [1]; Zerner [20] did so for domains with Lipschitz 
boundaries. The existence of a basis in the space C ~ ((2), where f2 has a boundary of HNder type 
was established in [13, 17] (see also [4]). Zeriahi in [19] found a basis in the space of Whitney 
functions g(K) for a compact set K satisfying the Markov property. 

In all these cases the space C ~ (~) turns to be isomorphic to the space s of rapidly decreasing 
sequences and the desired basis is the system of orthogonal polynomials in an appropriate Hilbert 
space. In the case of domain f2 with a cusp (more sharp than H61der type) the spaces C ~ ((2) and 
s are not isomorphic and moreover a continuum of pairwise non-isomorphic spaces of this kind 
were found in [14, 5] by the method of linear topological invariants. 

Applying a modification of Mityagin's basis construction in the space C ~ (~) ([ 12], T. 15), 
bases were constructed for ~ - ]~2 C F (f2), when f2 6 is a graduated sharp cusp [9], and for E F ( K ) ,  

when K C N is the closure of a union of a sequence of closed intervals tending to a point [6]. 
The subscript F here meansflat and corresponds to the subspaces of functions vanishing with all 
derivatives at the point of the cusp of f2, (respectively at the point of accumulation of the intervals 
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of K). It should be noted that in the classes of  spaces C~((2) ,  E F ( K )  a continuum of pairwise 
non-isomorphic spaces can be found as well. 

New construction of  a basis in the whole space E(K)  was suggested in [7] for the compact 
set K of  above-mentioned type. The method works under some restrictions on K, but it can be 
applied in two important cases: first, when the space S(K)  is isomorphic to the space s and, 
second, when there are severe constrains on the distances between neighboring intervals but the 
only restriction on the sequence of  interval's lengths is its monotonicity. The last case is of  
especial interest, because it contains a continuum of pairwise non-isomorphic spaces. 

In the present article we construct a basis in the space C ~ ( ~ ) ,  f2 is a plane domain of  the 
form of graduated sharp cusp with arbitrary sharpness of  the spike. In the construction we use 
a special basis in the space C~176 1] (Section 3). The present basis can not be obtained as an 
expansion of  the basis in the subspace C~((2)  since this subspace is not complemented in the 
space C~176 (see Remark 6.3 in [7]). 

2. Preliminaries 

Let f2 C R a be a bounded domain, K C N d be a compact set. We consider the space 
C a ((2) of  infinitely differentiable in f2 functions such that the functions and all their derivatives 
are uniformly continuous on the domain, and the space C(K) of  Whitney functions, that is traces 
on K of  Ca-funct ions  defined on all space R d. The topology in the space C~((2)  is defined by 
the norms 

[flp---sup[ f(J)(z) : z c  f2, l j[ < p ] , p � 9  . . . .  }, 

where j = (jl . . . . .  jd) �9 No ~ and [j[ = J1 + . . .  + Jd. 

In turn the norms in the space s are defined by 

{ (Rpz~ } 
Ilfllp ---- I f l p  'I- s u p  i Z - ~ Z - ~ - - ~  : z, z0 ~ K, z 7 ~ z0, IJl -< p , 

p �9 No, where RPzof(Z) = f ( z )  - TzPof(Z) is the Taylor remainder. In what follows we will 
consider only the cases d = 1 or d = 2. 

The space g(K) is always nuclear as a quotient space of s. If  the domain f2 is regular in 
Whitney sense (for the definition see e. g., [10]), then the norms I �9 Ip and II �9 lip are equivalent 
and thus, C~((2)  ~ g (~ ) .  

We use the Chebyshev polynomials 

Tn(x) = cos(n �9 arccosx),  [x[ < 1, n E N0 . 

Let Tn be the Chebyshev polynomial considered on R and for fixed interval Ik = [Xk -- 6k, Xk + 
8k] C K let Tnk denote the scaling Chebyshev polynomial, that is Tnk(X) = Tn r ' ak " and let 

Tnk be the restriction of  Tnk on Ik, Trig = 0 otherwise on K. 

2 By ~nk we denote the functional ~nk(f) = ~ f o  f (xk + 3k COS t) COS nt dt, 
n c No (ifn = 0, then we take 1 instead of  2 in the coefficient). Clearly, for fixed k the functionals 
(~nk) are biorthogonal to the system (l"nk). 

By I " I-q we denote the dual norm of a functional in the corresponding space. We adhere to 
the convention that 0 ~ = 1. 
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3. Spec ia l  bas i s  in  the  space  C ~ [ 0 ,  1] 

Let us fix a c o m p a c t  set K = {0}uU~C_l lk  C [0,1], where lk = [ak,bk] = [Xk-- 
8k, Xk + 6k] be such that 8k $ 0 and for some constant C one has Xk < C6k, 8k < Cgk+l and for 
hk :=  dist(Ik, Ik+l) let Chk > 3k, Vk. Without loss of  generality we can take the compact set 

oo 
K = {0} t.J Uk=l[3  �9 2 -k-1 , 2 -k+l ] the same as in [7], Section 6. Then the following functions 

OO,OO 
{e,k}n=O,k=l form a basis in the space S ( K ) .  For l(k) = [k/4] (the greatest integer in k /4)  let 

enk = 7"nk [O,bk]fqK and enk = 0 otherwise on K i fn  < / ( k ) ;  e~k = Tnk if n > l(k). The system 

of functionals oo' oO {Onk}n=0,~=l with 

l ( k - 1 ) - I  

rink : ~nk -- E ~nk(eik-1)~ik-1, n < /(k); Onk = ~nk, n > l ( k ) ,  
i=n 

oo,oo 
is biorthogonal to the system {enk }n=0,k=l" 

In addition for i < n we have the following bounds [7]: 

sup{ 2,,i - _ n  k , n E N o ;  ( 3 . 1 )  

I~nkl-q <- C((~k/n) min(n'q) , n E N0 ; (3.2) 

sup Ts : 0 < x  < b k  <3~ - 2 i - l , n  <l (k) ,"  (3.3) 

Itlnkl_q < C(~ q-1 , n < l(k) . (3.4) 

To simplify notation we use the same letter C for any constant which does not depend on n 
and k. 

We will extend the basis elements enk from K onto [0, 1]. In this way we obtain a continuous 
projection in the space Cool0, 1]. This idea goes back to Mityagin's construction of basis in the 
space C~(1R) ([12], T. 15; see also [9]). 

Letwr  be a Coo-function such that cor (x) = 1 forx  < 0, mr(x) = 0 f o r x  > r and Io)rlp < 
Cp r -P,  p ~ No. Now let CoOk (x) = coa k (x -- bk) and for r = ~/,. n -2  let o~nk (x) = mr (x - bk) 
if 0 < n < l(k), Wnk(X) = cor(x -- bk)[1 -- o)r(x -- ak + r)[  if n > l(k). Clearly 

IO)0klp < C3k p, JCOnklp <_ Ct~;Pn 2p, n c N . (3.5) 

Define enk = Tnk " COnk. Fix F ~ C~176 1]. Let f = F JK- Using the basis expansion 
f = ~ - 1  ~n~=0 Onk(f) "enk we introduce the following linear operator 

Q : Coo[O, 1] --~ Coo[O, l] : F ~ ~ Z Onk(f)" enk. 

k = l  n=O 

L e m m a  3.1. Q is a continuous projection. 

Proof .  Since enklr = enk, wesee tha t  Q(F)IK = f a n d  Q is a projection. Let us show its 
continuity. Given p 6 No let q = 2p + 3. Fix k > 4q. 

For each polynomial P the Bernstein theorem (see e. g., [15]) implies 

IP(x)l _< Ix + x / ~ x  2 -  l l degPsup{ Ie (x ) l : l x l  <_ 1}, Ixl > 1. 
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For Chebyshev polynomials we get 17~(i)(1 +e) l  _< (1 +247)nTn(i)(1) i fe  _< 1/4 and 17~n(O (x)l _< 
e2n 2i for Ixl _< 1 + n -2.  It follows that if dist(x, Ik) _< 6kn -2 then 

77(~)(X) 5 e2n2 irk  i �9 (3.6) 

Now we can estimate the norms of gnt. 

Let at first 0 < n < l(k). Then en~ = ;rnk for x < bt; e.nk = 0 for x > bk + 8in -2. For 

other x using the Leibnitz formula by (3.5) and (3.6) we get Ig~ j) (x)] < Cn 2j (~;J, j �9 NO. Since 

n < l(k) < k /4  and at = 2 - t - 2 ,  we see that n 2j < Sk J . Taking into account (3.3), we obtain 
the bound 

]enk[p <_ C(~k 2p-1.  (3.7) 

Clearly it is valid also for n = 0. 

Let now n > l(k). Then enk = T,,t on Ik and Ynk(x) = 0 for dist(x, It)  > akn -2. In the 
same manner we can see that 

lenklp <- Cn2Pak  p �9 

To deal with rQ(F)Ip, we use the following decomposition 

(k~=ql q 4q ~ oc /(~_~1 k k ) E + Z  Z + Z + n=0 k=l n=q+l k=4q+l n=0 k=4q+l n=l(k) 

(3.8) 

Ion t ( f ) l "  I~ntlp �9 

Let us consider the sums above separately. We omit the subscripts of  ~Tnk and enk. 

sum I t l ( f ) l"  [elp _< CIIfHq84q 2p-1 < C[rfl]q, as k < 4q. For the first 

For the second sum (3.2) and (3.8) imply 

D ( f ) l "  I~lp - C(~k/n)qn2P~kP[[f[[q , 

which is a term of convergent series due to the choice of  q. 

If  now k > 4q and n < l(k), then by (3.4) and (3.7) 

[rl(f)l " lelp <- c6q-16k2p- l l [ f l lq  �9 

After summation over n we obtain l(k) terms of this type. Since l(k) < ~-1, the corresponding 
series over k is convergent. 

In the same manner it can be checked that the last double series converges as well. 

Thus the operator Q is well defined and I Q (F)[p < C 11 f IIq. Using the Lagrangian form of 
the Taylor remainders we have the bound 

( R q f )  (O(x) = ( R q f ) ( i ) ( x )  < 2  f q l X - y l  q-i  

for any extension f e C~176 1] of  f and x, y e K, i < q. Therefore, [[fllq < 3]f[q for any 

extension f and in particular for f = F.  This gives the boundedness of  the operator Q and 
proves the lemma. [ ]  
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Oo Let X1 denote Q(Coo[0, 1]), X0 = {F E Coo[0, 1] : supp F C Uk=2[bk, ak-1]}. Then 
~ O O , O Q  

Coo[0, 1] = X1 @ X0 and (enk)n=O,k=l is a basis in the space Xl.  Let Pk denote the following 
projection: Pk(F) = F - Q(F) on [bk, ak-1] and Pk(F) = 0 otherwise on [0, 1]. Clearly, 
Pk(Coo[O, 1]) ~_ C~[bk, ak-1], where the isomorphism is just identification of functions from 
C~[bk, ak-1] with their extensions on [0,1] by zero. Here and subsequently, C~[a, b] denotes 
the space of Coo-functions vanishing at the endpoints of  the interval [a, b]. 

Consider the Hermite functions 

hn(t )  (--1)n (2nrl])-l/2:rr-1/4et2/2 (e-t2) (n) = , t c R ,  n ~ N 0 .  

They form a basis in the space S of rapidly decreasing on the line functions ([121, L. 27). The 
operator f ( t )  ~-~ g(x) = f ( t a n ( ~ x ) )  gives an isomorphism of the spaces S and C ~ [ - 1 ,  1] 

([12], L. 26). Therefore the sequence (~lnk)Lo,_ where flnk(X ) = hn(tan(~ 2x--bk--ak-l~ ),fora~ 

bk < x < ak-1 and link(X) = 0 otherwise on [0, 1], is a basis in the space Pk(Coo[O, 1]). 

The function F - Q(F) is flat on the compact set K. Using the Taylor expansion of Pk(F) 
at ak-1 it is easy to see that for any q 6 No the sequence (]Pk(F)lq)~Z2 is rapidly decreasing. 
Therefore, 

Oo p 
X0 : (Ok:2 k (C~176 1])) s 

and what is more, for any p ~ N there exists q c N and a constant C such that 

hnk p" lfnkl-q ~ C, Vn, k .  

Here the system of functionals {(nk} is biorthogonal to {h~k} in the space Coo[0, 1]. 

Taking into account Lemma 3. l we see that the system of elements ~nk, [ink with the cor- 
responding functionals Onk, (nk satisfies the Dynin-Mityagin criterion ([12], T. 9, see also [11]). 
Thus we have proved the following. 

T h e o r e m  3 .2 .  Thefunctionsenk, hn,k+l, n E NO, k E NformabasisinthespaceCoo[O, 1]. 

4.  G r a d u a t e d  s h a r p  c u s p  

Let us fix a sequence (TSk)~=l, 7Sk $ 0 and consider the step-function ~ �9 ~p(x) = ~k if 
ak <_ x < ak-1, k E N. Here we use notations of Section 3, a0 = bl = 1. 

Let us consider the following domain 

= [ (x ,  y)  2:0 < x < 1, lyl < 

The spaces C o o ( ~ )  and s are isomorphic if and only if there exists a constant M such that 
_ ( , l ~  ( a ) ' t O O  ~Pk > 8~ t for all k ([4], T. 1.3). Moreover, by choosing the suitable scale of  sequences t~-k ~k=l 

one can get a family having cardinality of the continuum of pair-wise nonisomorphic spaces of  
this type (see [14, 5, 4]). 

We will construct a basis in the space Coo(~r  for the sharp cusp; we can assume that 

~Pk--<32 , k E N .  (4.1) 

Let us denote by Rk the rectangle Ik • [ -  7rk, Ok ], by R~ the rectangle [bk, ak - 1 ] X [ - -  ~ k ,  ~ k  [- 
Let K = {0} U [.J~V=l Rk. 
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At first we give a basis in the space C(K). 

Let enmk(X, y) = e n k ( x ) T m ( ~ )  Ir n, m ~ NO, k ~ N. For f 6 E(K)  let 

4 f O ~ f O ~  
~nmk(f) = ~ f (xk + 8k cos t, 0k cos r)  cos nt cos mr  dt dr  

(here and in what follows instead of  4 we take 1 if n = m = 0 or 2 if nm = O, n + m ~ 0 ). Set 
rinmk(f) = ~nmk(f) for n > l(k) = [k/4]. I f n  < l(k) then let 

ri,,mk(f) = Jr 2 .10 Jo (xk +SkCOSt, O k c o s r ) c o s n t  

l-1 ] 
- - f ( xk -1  + 8k-1 COS t, Oh COS r) �9 Z ~(e) cos it cos mr  dt  dr  . 

i=n 

Here as in [7] we use the notation 

t - i  / (k- l ) - I  

E ~(e) :=  E ~nk(eik-1).  
i=n i=n 

L e m m a  4.1. The system o f  functionals ~ ~ (rinmk )n,m=O,k=l i s  total on s ( K)  and biorthogonal to 

nmk ) n,m=O,k= l " 

Proof .  Let e~r) denote the functional ~m(~)(G) = 2 ~mk -~ f o  G(Ok cos r)  cos mr  dr .  If  the func- 
tion f 6 E(K)  can be represented in the form f ( x ,  y) = F ( x ) G ( y ) ,  then, as is easy to see, 

Onmk ( f  ) = ~nk ( F)  ~ ~m~ ) ( G). This remark and biorthogonality of the system {enk , rink } imply that 
of  {enmk, Onmk }. The property of  being total can be proved in the same manner as in Lemma 3.2 
in [7]. [~ 

OO,00 Theorem 4.2. The system {enmk, Onmk }n,m=O,k= 1 i s  a basis in the space s ( K ). 

Proof .  According to the Dynin-Mityagin criterion and Lemma 4.1 it is enough to show that 
for any p E 1~ there exists q E N and a constant C such that 

[[enmkllp " Irinmkl-q < C, Yn, m, k .  (4.2) 

__ -',X - 1 / 2  
For given p let us fix q = 2p + 2, kq = 4q + 3 and natural mq > t/Ukq . We decompose 

N0 2 • N into certain zones and give the estimations of  the norms for given cases separately. To 
simplify notations we use the same letter C for any constant which does not depend on n, m and 
k. The details are left to the reader. 

ZO. n < q, m < mq, k < kq. Here we have only finite number of  elements and no problem 
with (4.2). 

I f n  > l(k),  then enmk(X, y) = Tn(~'~kk)Tm(~) for (x, y) ~ Rk. 

If j = ( j l ,  j2) E N0 2, j l  < n, j2 < m, then 

<(n2 J1( 2 J2 
enm  - �9 
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Here we have to take into account what term in the product above is larger and will  separate 
the cases when the inequality 

n 2 m 2 
- -  > - -  ( 4 . 3 )  
8k ~P~ 

holds. 

ZI .1 .  n > l(k) and (4.3) is valid (except the points from the zone Z0), 

Here Ilenmkllp < C \-~k ] " 

(m2hP 
Z1.2. n >_ l(k), (4.3) is  not valid and m > p > [[enrnkllp <_ C \  Ok ] " 

(dhp -m 
Z1.3. n > l(k), (4 .3) is  not valid and m < p ~ [[enmk ][p <_ C ~ k  m \ 3k I " 

Consider now the cases with n < l(k). Here 

o0 R f o r  (X, y) 6 Uq=k q and it is 0 otherwise on K .  W e  conclude from (3.3) and (4.1) that 

e(j) ~--1--2jl ( m 2 )  j2 7tklJlm2j2 

if  j i  < n, j2 < m. 

(m: Z2.1. n < l(k), p < m ~ I]e,,mk[Ip <_ CS-~ 1 \ ~ ] �9 

m p Lleom tL  Z2.2. n 

Z2.3. n < l(k), m + n <_ p ',, [[enmkl[p < Cqtkm3~ - n - p - ~ .  

Our next objective is to evaluate the dual norms of  the functionals Onrnk. 

Let the function g be r times differentiable on the interval I with length A. Then for the 
best approximation to g by polynomials  of degree _< n on I in the norm I" ]0 we have the following 
form of  the Jackson theorem (see e. g., [15], 5.1.5): 

( ~ ) r  g(r) o En(g, I)  <_ Cr , n >_ r ,  (4.4) 

where the constant Cr does not depend on n, g and A. 

Let us consider now all given zones in the same order. Fix f 6 g ( K ) .  

ZII .1 .  n >_ l(k) with (4.3). Here 

4 f0 [f0 ] rl~mk ( f )  = ~nmk ( f )  = - ~  f (xk + 8k COS t, Ok COS r )  cos nt dt  cos m r  d r  . 

Due to orthogonality we can subtract from f in the internal integral arbitrary polynomial  Qn-1 
(cos t) of  degree _< n - 1. I f  we take the polynomial  of  the best approximation to f with respect 
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to the first variable then we get by (4.4) 

4f0zr (n--~l) q (~)q  [Onmk(f)[ <-- -- Cq [flq dr <_ C - -  []fl[q , 
Jr 

a s n - 1  _>q. 

Z ' l . 2 .  n >_ l(k), (4.3) is not valid, m > p. We apply the previous argument with the 
polynomial Qm- 1 of the best approximation to f with respect to the second variable. 

(~)q If m > q, then [~]nmk(f)[ <-- C ][fl[q. 

I f p  < m < q ,  then 

( ~ k ~  m-I 
]tTnmk(f)[ < C \-m~-l- l J [If[In-1 -< CTtff [[fl[q 

and that is enough for (4.2) since in the bound of [[enmk [[p for this case we can replace m 2p by a 
constant. 

ZI1.3. n > l(k), (4.3) is not valid, m _< p. Here at first we take the Taylor expansion of f 
with respect to the second variable: 

~nm~(f) = ~ Jym tXk + ~k COS t, O) COS nt ~ v  " COS m r COS m r  dt dr  , 

o e [ -~k ,  7~k]. 

n - 1 > q, we can apply (4.4) with r = q - m to fy(mm)( ", 0): Since 

[Y]nmk(f)[ < C~7 ( ~k ~q-m f(q) 0 < C ~  (~kn)q-m -- ~Xl'Z -- 1J J g q - - m y m  - -  Ilfllq �9 

We now turn to the cases when n < l(k). Here the functional Tlnmk is represented by 

rlnmk(f)  = (Xk + 8k COS t, Ok COS r)  cosn t  

Y~.l-1 it 1 f ( x k - I  + 6k-1 cos t, ~Pk cos v) �9 ~ se(e) cos cos m r  dt dr  . 
i=n 

We will use the bound (6.1) from [7]: 

l(k-1)-i 
I~nk(eik-1)] < 3k 1 �9 

i ~n 

W2.1. n < l(k), m > p. If m > q, then we subtract from both functions above the 
polynomials Qm-1 ,  Ore-1 of the best approximation to the corresponding functions with respect 

cases we get the bound I f  - Q[0 _< Cq J_(~')q If lq,  as rn - 1 >_ q. to the second variable. In both 

Therefore, 

[rlnmkl_q < C8~ 1 
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If  p < m _< q, then [Onmk(f)[ <_ C ~ S k l l f [ m  and 

[lenmkl[p[rlnmk[- q < C~k-P~k  2 < C,  

by (4.1). 

Zt2.2. n < l(k), m < p < m + n. First suppose that m + n _> q. Then we use the Taylor 
expansion of  both functions with respect to y at 0 up to m-th degree and then expand the first 
function at xk, the second term at xk-1 up to (q -- m)-th degree. Since n > q - m and i >_ n all 
terms of the small degree will vanish after integration. From this we deduce that 

q-m q-m -1] _ p~bmxq-m-1 
]~nmkl-q <- C~t~ ~k -'}-~k-1 ~k < "-'Vk ~'k ' 

as ~k-1 = 2~k. 

Now we have the most difficult case: m < p < m + n < q. Take the Taylor expansion of  
the functions with respect to y at 0 up to (q - n - 1)-th degree. Then 

4 f0rrf0Jr [ q ~ l  ,e(s, Onmk(f) = ~ [. s=m dyS (X~+3gCOSt, 0) . cosSrcosn t  

q-n-1 s l-1 
jyS t k - l + ~ k - l C O S t ,  O) c o s S r E ~ ( e ) c o s i t  c o s m r d t d r  +Remainder ,  

S=~ i=n 

where 

4 fO~rfOJr Ff(q_n) ~ q - n  Remainder = - ~  Ldyq-- n (Xk + ~ cos t, 01) (q _ n). c~ r cosnt  

~-n 
i=nl--1 ] ~e(q--n) ~ ~(e) cos it cos mr  dt dr,  --Jyq-n tXk-1 § ~k-I COSt, 02) ~ COS q-n r 

01, 02 E [-Ttk, ~k]. The terms corresponding to values s = 0, 1 . . . . .  m - 1 vanish after inte- 
gration. In Remainder we take the expansions of  f with respect to x up to n-th degree at Xk and 
xk-1 correspondingly. Then 

[Remainderl < C~P~ -n [SZ + 3Z-l~k 1] l f i e  < C't~q-nsn-I 
- -  - -  V k  k Iflq" 

By (4.1), the product of this value with Ilenmk lip is uniformly bounded, as is easy to check, 
thus we can turn to the main part of  the expansion of  ~nmk(f). 

-(s) t Let g denote the function jyS ~-, 0). Then we get the following representation of Main part: 

2 { f0 E q-n..1 cos s r c o s m r  2/zr g(xk + ~kCOSt) cosnt  
g s! S~m 

l--1 

i=n 

The expression in the braces is ~nk(g). By Lemma 4.1 in [7] 

[ q - - s  __Xk)q-s~ 1] lOnk(g)l < C ~k + (bk-1 k ][gl[q-s , 
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as n < q - s. This implies 

and we get the bound 

lT?nk(g)[ ~ C ~  -s-1 [[fllq 

q-n--1 
IMain partl < C Z ~6q-S- l l l / l l q  �9 

s = m  

Clearly that the maximal term in the sum corresponds to s = m. Thus, 

_ C,t~m~q-m-1 ,e IMain partl < v'k ~ s q,  

~lr-mx-1-2p+2m in due to the choice of  q. which is enough to neutralize the value v,k ~k Ilenmk lip 

ZI2.3. n < / ( k ) ,  m + n < p. All  arguments of  the case p < m + n < q can be repeated. 

Thus for the system {enmk, ~ '~  ~nmk}n,m=O,k=l we have the Dynin-Mityagin  condition (4.2), 

and the proof  is complete. [ ]  

We are able now to construct a basis in the space C ~ ( ~ ) .  The result follows by the same 
method as in the construction of  the special basis in the space C ~ [ 0 ,  1]. Using the same notations 

as in Section 3 we introduce 

enmk(X,y)-~enk(X)Tm(~k), (x,y) Ef2r 

For given F c C ~ ( ( 2 ~ )  we consider the restriction f of  F on K as an element of  the space 
~(Jl)- - (Jl) S ( K ) .  The derivative enk iX) has the same (up to a constant) upper bound a s  enk (x) due to the 

choice of  the smoothing functions O~nk. Therefore the projection 

Q : C~ ((2r --> C~V (~gt) : F w-~ ~ ~ ~-~ rlnmk(f) .enmk 
k = l  n = 0  m = 0  

is well defined and continuous. 

Now let Y1 = Q(C~((2~)) ,  Yo = {F 6 C~((27~) : s u p p F  C [..J~=2R~}. Then 

C ~ ( ( 2 ~ )  = Y1 @ Yo and ~l~nmk)n,m=O,k= l x ~ , c x ~  is a basis in the space Y1. Take the projection: 

Pk(F) = F -- Q(F) on R~ and 0 otherwise on ~ .  Here Pk(C~((2~)) = {F ~ C~((2~)  : 
s u p p F  C R~} = C~[bk, ak_l]~C~[--Ttk, 7tk]. Arguing as in Section 3, we can see that 

the functions ~ ~ = (hnmk)n,m=O, where hnmk(X, y) hnk(X)Tm(~),  form the basis in the subspace 

Pk(C~((2r of the space Y0 and 

= ~ p Y0 (*k=2 

Arguing as in the proof  of  Theorem 3.2, we have the following theorem. 

~ 

T h e o r e m  4.3.  The functions enmk , hn,m,k + l , n, m E NO, k ~ 1~ form a basis in the space 
C ~ ( ~ ) .  

Let us note that the space X0 in Theorem 3.2 is isomorphic to s (see e. g., [11], Proposi- 
tion 31.12). On the other hand, for the present case we have the following. 
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Proposition 4.4. The spaces Yo and s are isomorphic i f  and only i f  for some constant M 

~& >_ ~ ,  k e N .  (4.5) 

Proof. Suppose that Y0 "~ s and therefore the space Y0 belongs to the class D1 [18] or has 
the dominating norm property DN (see e. g., [11]), that is 3p : Yq 3r, C 

Ifl~ _< C]f]plf lr ,  f ~ Xo,  (4.6) 

where p, q, r 6 N0, C > 0. 

Suppose, contrary to our claim that there exists a subsequence (kt)~=l with 

~&, < ~, ,  1 ~ N.  

Let p ~ N0 be chosen from the definition of  the class D1. For q = p + 1 let r and C be fixed 
from the definition (4.6). Let us consider the functions j~, I ~ N with j~(x, y) = yqoook(x). 

(q) 
Then, as is easy to check, ] f l ip  < C~rk ta~P,  IJ)lr -< Ca~ r+q and I f l [q  > I ( f l ) yq  ( 0 , 0 ) ]  ~_~ 1. 
Using the supposition about ~Pkz we obtain 

1 < ]3'llq < Clfllplftlr < C~+l q - r - p  , 

which is a contradiction for large I. 

For the inverse implication we see that (4.5) implies the isomorphism C ~  ((27s) "~ s. There- 
fore the space Y0 can be considered as a complemented subspace of s. On the other hand, 
Y0 contains a complemented subspace which is isomorphic to s (for example, the subspace 
Pk(C~176 for any fixed k ). Using the Pelczyfiski-Vogt decomposition method (see e. g., [11], 
L. 31.2), we get the desired conclusion. [ ]  
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